- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001100002000000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Lou, Mengqi (4)
-
Pananjady, Ashwin (4)
-
Bresler, Guy (2)
-
Chandrasekher, Kabir_Aladin (1)
-
Wang, Guanyi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 27, 2026
-
Lou, Mengqi; Bresler, Guy; Pananjady, Ashwin (, The 36th International Conference on Algorithmic Learning Theory)Free, publicly-accessible full text available February 24, 2026
-
Chandrasekher, Kabir_Aladin; Lou, Mengqi; Pananjady, Ashwin (, Information and Inference: A Journal of the IMA)Abstract We consider the problem of estimating the factors of a rank-$$1$$ matrix with i.i.d. Gaussian, rank-$$1$$ measurements that are nonlinearly transformed and corrupted by noise. Considering two prototypical choices for the nonlinearity, we study the convergence properties of a natural alternating update rule for this non-convex optimization problem starting from a random initialization. We show sharp convergence guarantees for a sample-split version of the algorithm by deriving a deterministic one-step recursion that is accurate even in high-dimensional problems. Notably, while the infinite-sample population update is uninformative and suggests exact recovery in a single step, the algorithm—and our deterministic one-step prediction—converges geometrically fast from a random initialization. Our sharp, non-asymptotic analysis also exposes several other fine-grained properties of this problem, including how the nonlinearity and noise level affect convergence behaviour. On a technical level, our results are enabled by showing that the empirical error recursion can be predicted by our deterministic one-step updates within fluctuations of the order $$n^{-1/2}$$ when each iteration is run with $$n$$ observations. Our technique leverages leave-one-out tools originating in the literature on high-dimensional $$M$$-estimation and provides an avenue for sharply analyzing complex iterative algorithms from a random initialization in other high-dimensional optimization problems with random data.more » « less
-
Wang, Guanyi; Lou, Mengqi; Pananjady, Ashwin (, IEEE Transactions on Signal Processing)
An official website of the United States government
